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Abstract. The eikonal solution of the radial Schrodinger equation for spherically symmetric 
potentials is treated by the quasilinearisation technique. The first iteration contains all the 
terms of the full expansion of the eikonal series obtained by Froman and Froman but with 
different coefficients. The strength of the centrifugal potential appropriately modified in 
each order of approximation is obtained stipulating the proper behaviour of the wavefunc- 
tion at the origin. It leads to an iterative map which converges very fast due to quadratic 
convergence of quasilinearisation. The energy eigenvalues for the Coulomb potential are 
obtained by this technique. 

1. Introduction 

The radial Schrodinger equation with spherically symmetric potentials can be treated 
as a one-dimensional problem and JWKB solutions of different orders can be obtained 
by the method of Froman and Froman [l]. The behaviour at the origin of the J W K B  

wavefunction for different orders when the centrifugal barrier potential is taken to be 
of the form L 2 / r 2  has been fully discussed in the literature [2-41. It has been found 
earlier by Langer and Kemble that the first-order solution requires the modification 
of L2 being replaced by ( f + i ) 2  and not by f ( f+ l ) .  Recently it has been shown [5] 
that the effective modified value of L2 can be determined in any order using the Froman 
and Froman series for the logarithmic derivative of the wavefunction and that the 
effective value of L2 when all orders are summed is the actual value I ( / +  1). Their 
prescription for the determination of L2 also leads to the correct spectrum of eigenvalues 
in any order. 

Our approach differs from the usual Froman-Froman series solution for the logarith- 
mic derivative y of the wavefunction though we start with the usual Riccati equation 
[l]. We use the quasilinearisation approach to solve the Riccati equation for y. The 
merit of this method is its quadratic convergence as shown by Bellman and Kalaba 
[8]. This is explained in a later section. The initial choice of yo = ik leads, even in 
the first order of approximation, to an infinite series of Froman-Froman type terms 
[9] but with different coefficients. For this first iterate, the appropriate value of L2 is 
already close to / ( I +  1). The second stage of iteration leads to an iterative map for 
which ( I  + 1) becomes the fixed point when proper behaviour of the wavefunction at 
the origin is imposed. The correct value of I( I +  1) for L2 is obtained immediately. 
Calculation of the eigenspectrum can also be achieved by this iterative procedure. 

Section 2 deals with the quasilinearisation technique for solving Riccati equations 
[8]. In 0 3 we use this methodology for the case of the Coulomb potential to arrive 
at the iterative map for the determination of L2. We derive in 4 4 the energy spectra 
and summarise our discussion in 4 5 .  
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2. The method of quasilinearisation 

In this section we describe the method of quasilinearisation of Bellman and Kalaba 
[ 81. This may also be called the Newton-Raphson-Kantorovich approximation scheme 
for solving non-linear differential equations. 

If we start with the Riccati equation of the type 

U’+ u 2 + p (  t ) u  + q( t )  = 0 (2.1) 

with initial value u ( 0 )  = c we can write this equation using the maximum operation 
procedure as 

U‘= -max(2uuo- U:) - p (  t ) u  - q ( t )  (2.2) 
U0 

with uo(0)  = u ( 0 )  = c. 
Let us take the auxiliary linear equation 

with w(0) = c. (2.3) 2 w’ = uo - 2uow - p (  t )  w - q( t )  

It can be easily shown that u s  w. Having obtained the solution of (2.3) as w, we can 
use w as the initial assumed value uo in equation (2.2) to obtain the next successive 
approximation. Hence for the nth approximation we obtain the recurrence equation 

(2.4) 

with u,(O) = c. 
It has been shown [ 1 I ]  that the sequence {U,} of approximations possesses monoton- 

icity and quadratic convergence. Hence if our initial guess for uo is close enough we 
can get convergence to the actual value very quickly within two or three iterations as 
seen from many applications such as ‘identification problems’ and other types of 
boundary value problems with non-linearities (as shown in [8]). This method can also 
be applied with ease for matrix Ricatti equations [13] to find the bounds for the 
solutions. We apply this method to obtain convergent solutions for the logarithmic 
derivatives of the radial Schrodinger equation in the following section. 

U:, = U:-, -2u,u,-, - p ( t ) u ,  - q ( t )  

3. Application to radial Schrodinger equations 

In this section we treat the reduced radial Schrodinger equation for spherically sym- 
metric potentials by a quasilinearisation technique and investigate the nature of the 
centrifugal barrier term given the behaviour of the solution near the origin. Correspond- 
ing analysis for various orders of J W K B  approximation can be found in the literature 
[2-71. 

The radial Schrodinger equation for a spherically symmetric potential is 

U”+ A2k2U = 0 (3.1) 

with 

A’ = 2m/ h2  k2 = ( E  - Vef f )  

where 

Ve, = V (  r )  + ~ ~ h ~ / 2 m r ’ .  (3.2) 
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The correct value of L2 corresponding to the stipulated behaviour of U - r’+l near the 
origin is the main theme of different investigations. We consider potentials which 
satisfy the requirement r 2 V ( r ) + 0  as r + O  and k2 has a single minimum with two 
turning points. 

For solutions of the eikonal form 

we find y to satisfy the Riccati equation 

y’=-A(y2+ k2). 

Expanding y = X:=,, yn/An, we get from (3.4) the following recursion relation: 

-- dY,-I 
- -  i Y w Y ” - P  d r  w = o  

with yo= *ik. y , ,  y,,  . . . , can be easily obtained as 

1 ( k ”  3kI2) etc. 
y2=*-  --7 

k’ 
Y l =  -- 2k 2ik 2k 4k 

yo  = *ik 

(3.4) 

(3.5) 

(3.6) 

We stipulate that U - r’+l as r + 0 and U vanishes as r + CO. For the familiar J W K B  

solution, i.e. y = yo+ y ,  = (ik - k’/2k), r’+l behaviour of the solution results if L2 = 
( I + + ) 2 .  A similar analysis for series summed up  to a finite number of higher-order 
terms [2-41 has been carried out. It was recently demonstrated [SI that if all orders 
are summed the proper value of L2 = I (  I + 1) is recovered. To apply the quasilinearisa- 
tion technique we first rewrite (3.4) after the transformation d x  = A d r  as 

(3.7) 
with the initial condition y (xo )  = ik(x,). This is the same type of Riccati equation as 
(2.1) with p = 0 and 4 = k2. Hence using the quasilinearisation technique we obtain 
the set of recurrence differential equations 

(3.8) 

y’+ y 2  + k2 = 0 

2 
Y b  + 1 = Y p - 2YpYp+ 1 - k with yp+l(xo) = ik(xo). 

Starting with the initial approximation yo(x) = ik(x), we obtain for p = 1, y’,  = 
yi-2yoy, - k2 with y,(xo) = yo(xo) = ik(xo), a constant, i.e. 

y{=-2k2-2iky,.  (3.9) 
We can easily integrate (3.9) and obtain y, as 

y l ( x )  =y,(xo) exp( -2i lx k(x’) dx’) -2 lx ds  k2(s)  exp( -2i lSx k ( t )  d t ) .  (3.10) 
XO XO 

Integrating the second term in (3.10) by parts leads to 

y l ( x ) = i k ( x ) - i  1: dskt(s)exp(-2i[: k ( t ) d t )  

Successive integrated parts of (3 .11)  lead to the series 

(3.11) 

k’ 1 ( k ”  k’,) 1 (k’” 4k”k‘ 3k’*) 
2k 2ik 2k k 8k k’ k3 k4 yl(x)=ik(x)--+-  --z +- +- +...  

n = O  
(3.12) 
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The terms Lk'!,') satisfy [9] 

( -Lk'!!!,) with 9:) = ik. 
1 d  

Lk'!,'l=z (3.13) 

It is important to note that the first iterate y, itself is an infinite series similar to the 
usual W K B  series [ l ]  though not identical. Besides being a better approximation, the 
first iterate y, is also expressible in a closed integral form. For iterate of any order p ,  
we can write 

and Yip) can be obtained recursively since 

(3.14) 

(3.15) 

In the integral form 

Equation (3.14) and hence (3.16) is equivalent to summing a certain class of diagrams 
for the given potential. For p = 1 the first few terms of the series (3.12) can be computed 
explicitly for the Coulomb potential as 

where P = ( Ex2 + he2x - L')"'. 
In general for an arbitrary n we can write 

(3.18) 

It is to be noted that y, = Z Z!,') has no zero even though each 2':' may have zeros. 
However, y, has branch points and/or singularities at zeros of P corresponding to the 
classical turning points and a simple pole at x = 0. All higher iterates y p  also have the 
same structure. 

4. Determination of the appropriate values of L2 in every order 

In this section we analyse the nature of iterates y,, obtained by quasilinearisation and 
determine the appropriate value of L2 of the centrifugal barrier that would guarantee 
the stipulated behaviour of y, at the origin, namely y,, - ( I +  l ) / x  as x + 0 for every p .  

From equation (3.17) it is easy to see that 
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where A,,-l = L2("- l ' .  Hence 

Summing the series, (4.2) predicts the behaviour of y ,  as 

Yl  -f , /x wheref, = -2L2/(2L+ 1 ) .  (4.3) 

Successively iterating (4.3) by substitution in (3.15) we can obtain the behaviour of 
the pth-order iterate yp near the origin. If yp-l behaves a s fp - l /x  then from (3 .15)  and 
(3.14) it can be seen that y ,  behaves as 

The same result can also be obtained rather easily (as shown in the appendix) by 
carrying out the integral (3.16) after substituting yP- ,  - f p - , / x .  Hence the coefficient 
of l / x  in successive orders is given by the functional equation 

f;-l + L2 
2f,-, - 1 

f p  = (4.5) 

(with the initial value f o =  - L ) .  This is an  iterative map and for high iterates we can 
replace (4.5) by 

(4.6) 

Since F = 1 + 1 is a fixed point of the iterative map we obtain the value of L2 as 

L2=I(1+1).  (4.7) 

It is worth noting that we need not consider high iterates to obtain the value of 
L 2 = 1 ( 1 + 1 ) .  Evenf2 given by 

f:+ L2 
f2=- 

2fi - 1 

leads to the solution L2 = 1(I+ 1 )  if we recognise that both f i  and f2 should have the 
value I +  1 in order to have the stipulated behaviour near the origin. Thus quasilinearisa- 
tion leads elegantly to the correct solution even at the second stage of iteration. Also 
from (4.6), the straightforward solution for F is 

F = ++ L( 1 + 1/4L2)"* 

as was obtained by Seetharaman and Vasan, 

5. Energy eigenvalues 

It will be our aim in this section to compute the energy of the bound states using the 
usual Sommerfeld quantisation condition. Corresponding to our solution of U in (3 .3)  
the quantisation condition is 

y(x)  d x  = 2rrin,= I (5 .1 )  
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Figure 1. 

n, being the radial quantum number and the contour is going round the branch cut 
connecting the two turning points at x = r ,  and r2 which are the zeros of k2 in the 
complex x plane. The singularity structure of y as was discussed in § 3 consists of a 
simple pole at the origin and two branch points on the real axis. To evaluate the 
integral in (5.1) we adopt the familiar technique of integration in the complex x plane 
along the contour ABCDEFA shown in figure 1. Hence 

I = -27ii residue at x = O +  f r  y (x )  d x  

where r is a circle of very large radius R. The residue of y,  at x = 0 is just f ,  (i.e. the 
coefficient of the l / x  term). For large x, y behaves as ik for the Coulomb case as can 
be seen either from the series ET?’ in which the dominant term is ik or from the 
differential equation itself. Hence, we have for large x, y,  - i f i (  1 + he2/2Ex) which 
contributes -7ie2A/* to the integral over r. Hence from (5.2) 

2rrinri-27iif, = -irhe’/fl.  (5.3) 

Since in every order f ,  is 1 + 1 we have for E (using A’= 2m/ h 2 )  

2me4.rr2 E = -  
h’( n,+ I + 1)  (5.4) 

as bound-state eigenvalues of the energy. Equation (5.4) also remains valid for 1 = 0 
r 121. 

6. Conclusion 

The method of quasilinearisation used in this work to obtain the eikonal solution to 
the Schrodinger equation is seen to be very different from the Froman series approach, 
and produces infinite series like the Froman series even at the first stage of iteration. 
The usefulness of the method is enhanced because an  integral form is also available 
in addition to a series representation for various iterates. We have shown in the 
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appendix how the powerful integral form can be used to bypass the series method to 
obtain the iterated map for f,. For the Coulomb potential the iterated map leads to 
the actual value of L2 at the second stage of iteration itself. The results obtained with 
regard to the appropriate value of L' are valid for any spherically symmetric potential, 
such as an isotropic quartic oscillator for instance, so long as the potential satisfies 
the condition r 2 u (  r )  + 0 as r + 0. Energy eigenvalues for the Coulomb potential could 
easily be obtained from the semiclassical quantisation condition. For the quartic 
oscillator also energy eigenvalues can be calculated using well known methods [ 6 , 7 ]  
either from the series (3 .12)  or its integral represenation ( 3 . 1 6 ) .  Application of the 
method of quasilinearisation to other potentials is in progress. 

Appendix 

In this appendix we will illustrate the usefulness of the integral form ( 3 . 1 6 ) .  The 
iterated map (4.5) can be easily obtained using (3 .16) .  Substituting y p - ,  - f p - , / x  and 
k 2 - - L 2 / x  (for x + O )  in (3 .16)  we obtain 

where we have used 

i.e. 

Evaluating the integral and setting the lower limit xo = 0, we obtain 

Hence the iterated map (4.5) holds as found by this integral representation and yields 
the correct result for L2.  
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